Humidity and Gravimetric Equivalency Adjustments for Nephelometer-Based Particulate Matter Measurements of Emissions from Solid Biomass Fuel Use in Cookstoves

نویسندگان

  • Sutyajeet Soneja
  • Chen Chen
  • James M. Tielsch
  • Joanne Katz
  • Scott L. Zeger
  • William Checkley
  • Frank C. Curriero
  • Patrick N. Breysse
چکیده

Great uncertainty exists around indoor biomass burning exposure-disease relationships due to lack of detailed exposure data in large health outcome studies. Passive nephelometers can be used to estimate high particulate matter (PM) concentrations during cooking in low resource environments. Since passive nephelometers do not have a collection filter they are not subject to sampler overload. Nephelometric concentration readings can be biased due to particle growth in high humid environments and differences in compositional and size dependent aerosol characteristics. This paper explores relative humidity (RH) and gravimetric equivalency adjustment approaches to be used for the pDR-1000 used to assess indoor PM concentrations for a cookstove intervention trial in Nepal. Three approaches to humidity adjustment performed equivalently (similar root mean squared error). For gravimetric conversion, the new linear regression equation with log-transformed variables performed better than the traditional linear equation. In addition, gravimetric conversion equations utilizing a spline or quadratic term were examined. We propose a humidity adjustment equation encompassing the entire RH range instead of adjusting for RH above an arbitrary 60% threshold. Furthermore, we propose new integrated RH and gravimetric conversion methods because they have one response variable (gravimetric PM2.5 concentration), do not contain an RH threshold, and is straightforward.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Acute Pulmonary Deficits Associated with Biomass Fuel Cookstove Emissions in Rural Bangladesh

The use of solid biomass fuels in cookstoves has been associated with chronic health impacts that disproportionately affect women worldwide. Solid fuel stoves that use wood, plant matter, and cow dung are commonly used for household cooking in rural Bangladesh. This study investigates the immediate effects of acute elevated cookstove emission exposures on pulmonary function. Pulmonary function ...

متن کامل

In-Use Emissions and Estimated Impacts of Traditional, Natural- and Forced-Draft Cookstoves in Rural Malawi

Emissions from traditional cooking practices in low- and middle-income countries have detrimental health and climate effects; cleaner-burning cookstoves may provide "co-benefits". Here we assess this potential via in-home measurements of fuel-use and emissions and real-time optical properties of pollutants from traditional and alternative cookstoves in rural Malawi. Alternative cookstove models...

متن کامل

Household Air Pollution Exposures of Pregnant Women Receiving Advanced Combustion Cookstoves in India: Implications for Intervention.

BACKGROUND Household air pollution (HAP) resulting from the use of solid cooking fuels is a leading contributor to the burden of disease in India. Advanced combustion cookstoves that reduce emissions from biomass fuels have been considered potential interventions to reduce this burden. Relatively little effort has been directed, however, to assessing the concentration and exposure changes assoc...

متن کامل

Indoor Particulate Matter Concentration, Water Boiling Time, and Fuel Use of Selected Alternative Cookstoves in a Home-Like Setting in Rural Nepal

Alternative cookstoves are designed to improve biomass fuel combustion efficiency to reduce the amount of fuel used and lower emission of air pollutants. The Nepal Cookstove Trial (NCT) studies effects of alternative cookstoves on family health. Our study measured indoor particulate matter concentration (PM2.5), boiling time, and fuel use of cookstoves during a water-boiling test in a house-lik...

متن کامل

Reducing Ultrafine Particle Emissions Using Air Injection in Wood-Burning Cookstoves.

In order to address the health risks and climate impacts associated with pollution from cooking on biomass fires, researchers have focused on designing new cookstoves that improve cooking performance and reduce harmful emissions, specifically particulate matter (PM). One method for improving cooking performance and reducing emissions is using air injection to increase turbulence of unburned gas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2014